

Air & Material Air & Mary 2015

nemeronal y z e r s

Contents

FEATURES	p.3	
APPLICATIONS		
WATER	p.4	
A IR	p.5	
PARAMETERS		
Naïade	p.6	
AETHER	p. 7	
SPECIFICATIONS		
MESUREMENT PRINCIPE	p. 8	
TECHNICAL DATA	p. 9	
HEMERANT HILL	p.12	
	17711771 71	
	HITT. HIL ' HIL	
	adl. i	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

+ Features

WIN THE INNOVATION PRIZE IN EUROPE

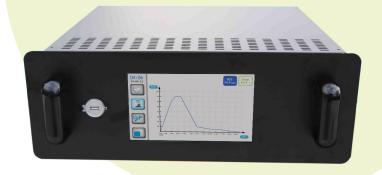
With more than 18 years of professional experience in the analyser industry, our engineers have developed a wide range of advanced solutions and services to help monitoring the quality of water and air

BEST TECHNOLOGY IN UV-SPECTROSCOPY

- High degree of stability, selectivity and sensitivity
- No second pollution
- Up to eight components measured simultaneously
- Uses FTLS mathematical (Resolution, sensitivity, stability, and reliability superior to dispersive or filter NDUV analyzers)
- Non-contact with sample
- Upgrade parameters: nitrate, color by changing software (not changing hardware)

FRIENDLY DESIGNE

- No moving parts in the detector module (Each channel can be optimized for sensitivity, one spectral range and stability)
- Superior design and manufacturing methods make it faster and easier to use
- Compact simple design, less than 14 KG



- Customizable detector module: different detector for each different channel (Repeatability, reproducibility, stability, low maintenance analytical method transferability.)
- UV-radiation source with extremely long life span, and not heated

Easy to use

- Friendly screen, easy to handle
- USB collects Data
- <10s respond time</p>
- Easy installation
- Various applications

Water Applications

WASTE WATER

Waste water treatment plant, Industry

NO₃ NO₂ NH₄ COD pH TSS PO₄ Colour

Potabilization plants

NO₃ Colour Chlorine Turbidity pH

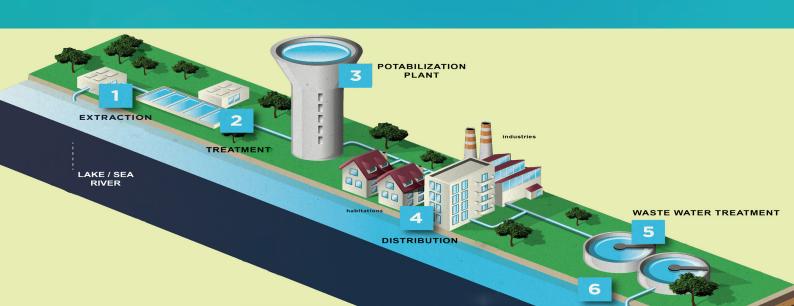
SURFACE WATER

River, Lake, Rainfall water

NO, PO, Hydrocarbon COD Salinity DO pH NH4⁺

SEA WATER

Desalination plant, Harbour


S²⁻ Hydrocarbon NH₄ NO₂

Environnement

Air Applications

EMISSION

Industry, power plant, waste incinerator

SO, NH, NO, NO, Cl,

AMBIENT AIR

City, waste water treatment plant, industry

H₂S SO₂ NO_x O₃

BIOGAS

Biogas plant, waste water treatment plant

H,S NH, Mercaptan

ENGINE GAS

 $\frac{\text{Motor bench, embedded system on vehicle}}{\text{NH}_{_3} \text{ NO}_{_{\chi}} \text{ SO}_{_2} \text{ H}_{_2}\text{S}}$

NaïadeMeasurement performa

performances

				. \			\mathbf{u}		-
(Components	Range	P	Accuracy	Repe	eatability	Det	ection	limit
					((
	NH ₄ ⁺ Ammonium	0 - 10 mg/L		0,1 mg/L		0,1 mg/L		0,1 mg/L	-
	NO ₃	0 - 100		0,1		0,1		0,1	
	Nitrates	mg/L		mg/L	_	mg/L		mg/L	
	NO ₂	0 - 10		0,1		0,1		0,1	
	Nitrites	mg/L		mg/L	_	mg/L		mg/L	-
	PO ₄ ³⁻	0 - 10		0,1		0,1		0,1	
	Phosphates	mg/L		mg/L	_	mg/L		mg/L	
	COD eq./BOD eq.	0 - 1000		±3-5		±0,1		±1	
	Organic Matter	mg/L		%	-	mg/L	_	mg/L	
	COD eq. H Organic Matter H	0 - 10000 mg/L		±5-10 %	_	±10 mg/L		±10 mg/L	_
	S ₂ -	0 - 10		0,1		0,1		0,1	
	Sulphides	mg/L		mg/L	_	mg/L	_	mg/L	-
ı	TSS	0 - 1000		±3-5		±0,1		±1	
+	TSS	mg/L			_	mg/L		mg/L	
<u>C</u>	Turbidity	0 - 100		±2		±2		±2 NTU	
Environment	Turbidity	NTU		NTU	_	NTU			-
	Turbidity H	0 - 4000		±5		±5		±1	
9	Turbidity H	NTU		NTU	_	NTU		NTU	_
.≥	Pt/Co	0 - 5000		±5-10		±1		±1	
	Colcour	Pt-Co		Pt-Co	_	Pt-Co		Pt-Co	
	Cl_{2}	0 - 10		0,01		0,01		0,05	
	Chlorine	mg/L		mg/L	_	mg/L	_	mg/L	
	Algea	0 - 100		0,1		0,1		0,1	
	Chlorophyll A	μg/L		μg/L	_	μg/L		μg/L	
	HC	0 - 10		0,1		0,1		0,1	
	Hydrocarbons	mg/L		mg/L	_	mg/L		mg/L	
	0_2	0 - 20		0,01		0,01		0,05	
	Dissolved Oxygen	mg/L		mg/L		mg/L		mg/L	
	EC	0 - 500		1		1		10	
	Conductivity	μS/cm		μS	_	μS		μS	
	Acid/Base	0 - 14		0,01		0,01		0,1	
	рН	рН		рН		рН		рН	
	O ₃ Ozone	0 - 10 mg/L	_	0,1 mg/L		0,1 mg/L		0,1 mg/L	

0,1

ORP

ORP

-1500 - 1500

 mV

0,1

0,1

 mV

Environment

Aether Measurement performances

Range

Accuracy

Repeatability Detection limit

SO ₂
Sulphur Dioxide
NO
Nitric Oxide
NO ₂
li <u>trogen Dioxid</u> e
NH ₃
Ammonia
HCHO
<u>Formaldehyde</u>
C_6H_6
Benzene
C_7H_8
Toluene
C_8H_{10}
Xylene

O₃ Ozone

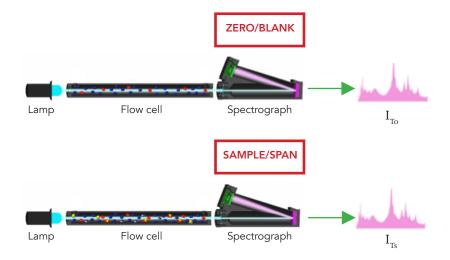
 C_2H_4O

Acetaldehyde

0 - 10 mg/m ³
0 - 10 mg/m ³
0 - 10 mg/m³
0 - 1000 mg/m ³

0,2
mg/m ³
0,5
mg/m ³
1
mg/m ³
0,1
mg/m ³
0,2
mg/m ³
0,1
mg/m ³
0,1
mg/m ³
0,1
mg/m ³
0,01
mg/m ³
0,2
mg/m ³

0,2
mg/m ³
0,5
mg/m ³
1
mg/m ³
0,1
mg/m³
0,2
mg/m³
0,1
mg/m ³
0,1
mg/m ³
0,1
mg/m ³
0,01
mg/m ³
0,2
mg/m ³

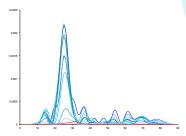

0,2 mg/m³ 0,5 mg/m³ 1 mg/m³ 0,1 mg/m³ 0,2 mg/m³ 0,1 mg/m³ 0,1 mg/m³ 0,1 mg/m³ 0,01 mg/m³ 0,2 mg/m³

Ranges indicated above are standard ranges. Aether and Naïade offer the possibility to measure lower and higher ranges on demand.

All sensors enclosure with IP68 and standard cable 10 meters and automatic cleaning by air compressed/ acid 5%.

Measurement Principle

Measuring principle is based on UV absorption spectroscopy according to Beer-Lambert's law.


Absorbance spectrum calculation is the difference between incident light (IT0) on ZERO (or BLANK) and transmitted light (ITS) on SAMPLE (or SPAN). Absorbance is defined as follows:

$$A = \log \frac{I_{T0}}{I_{TS}}$$

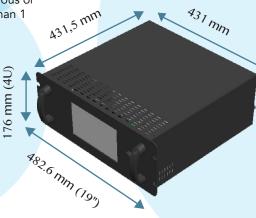
Molecule concertrations (c) are linear to absorbance spectrum (A) and optical path length (l) of the flow cell. Absorption coefficient (ε) is defined as follows:

$$\varepsilon = \frac{A}{l.c}$$

Sample absorption spectrum is treated using a Fourier Transform Least Square mathematical treatment (FTLS) in order to extract the spectrum corresponding to each element to be monitored.

Technical Data

Analysis:


- Range: 0 1ppm to 0 10%
- Zero drift: <2% / week
- Span drift: <0.5% / week
- Accuracy: <2% FS
- Repeatability: <2% FS
- Detection limit: 2% FS
- Response time: 1 to 10 sec Flow influence: <0.5% FS
- Pressure influence: <0.01% / hPa
- Temperature influence: <0.01% / T°C
- Warm up time: <1 hour
- Automatic cleaning: by acid or air compressed.

Cycle measurement: continuous or periodic, reponse time less than 1 minute

Sample:

- Temperature: 1 60 °C
- Pressure: <1500 hPa abs.
- Flow: 0.5 5 L/min
- Volume: < 100 mL

Monitor:

- Display: 8.5" TFT color touch screen Type: glass to glass
- Data storage: 16 GB
- Operating temperature: 0 50 °C

Outputs:

- Analog: 4 20 mA
- Alarm: default relay
- Interface: RS485 (modbus)

Enclosure:

Dimensions: 430*300*210mm

19" *4U*400mm

- Weight: < 14 kg
- Material: SS304 (SS 316 in option)
- Protection rate: IP54 (IP65 in option)
- Area classification: (ATEX zone 1 or 2 in option)

- Supply: 100 240 VAC or 24 VDC
- Consumption: 40 W max

Certifications:

Approvals: ICE 61010-1 / ICE 61326

The 18 years of expertise in the instrumentation field that our engineers have and the multiples partnership that we build, allow us to have a very good visibility of our clients issues. Thus, we are able to offer a detailed analysis of their situation and a fitted and customized solution. We offer a real follow-up and a quality after-sales service by experts in that field.

Following this spirit of excellence, we give value to respect the European rules and the high quality of our relations with our different partners.

ADVISING

We are able to perform an in-depth analysis of your requirement and your situation in order to offer you an adapted and customised situation.

ADVISING

The Hemera team can assist you for your on-site solution installation and commissiong.

Commisioning

OPERATOR TRAINING

We can deliver quality training in order to ensure that operators are able to use our instruments in good conditions.

MAINTENANCE

The Hemera team will follow you in the use of your equipment for its whole lifetime.

For more information, visit us on www.hemera.fr or contact us at sales@hemera-innovation.com

25 avenue du Granier 38240 Meylan FRANCE +33 4 76 51 73 95

Active member of:

